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概 要
自由境界問題とは, 未知関数 u と未知領域 Ω の両方について解く必要のある, 偏微分方程

式のことである. 解く前には与えられていない領域 Ω の境界のことを, 一般に自由境界という.
自由境界問題は興味深い偏微分方程式の一分野というだけでなく, 燃焼面の動き, 氷の融解, 相
分離過程などの応用があり, 理論的にも工学的にも重要な対象である.
本稿では, 次の自由境界 Allen–Cahn方程式{

∆u = 0 in {|u| < 1},
|∇u| = 1/ε on ∂{|u| < 1}

の解について, ε → +0 というある種の特異極限を取った際のふるまいについて考察する. 特
に主目的として, Hutchinson–TonegawaによるAllen–Cahn方程式の解に対して知られていた,
解が varifoldの意味で極小曲面に収束することの概略を, 自由境界型の設定に対して与えるこ
とが目的である.

1 導入: Allen–Cahnエネルギーと方程式
本稿で主に扱う Allen–Cahnエネルギーとは, 次の Dirichletエネルギーとポテンシャルエネル

ギーの和で定義されるエネルギーのことである:

J ε
δ (u) :=

ˆ
Tn

ε|∇u|2 + Wδ(u)

ε
dx for δ ∈ [0, 2] and u ∈ W 1,2(Tn; [−1, 1]).

ここで, ポテンシャル項 Wδ は

Wδ(u) =

(1− u2)δ for 0 < δ ≤ 2

χ(−1,1)(u) for δ = 0

であるとし, Tn は n 次元トーラス, すなわち Tn := Rn/Zn であるとする. この J ε
δ について, パ

ラメータが δ = 2 であるとき, 通常の, あるいは classical Allen–Cahnエネルギーであるという.

ポテンシャルのパラメータについて δ → +0 という極限を考えると, u = ±1 のときは 0, それ以
外のときは 1 という値をとる. そのため δ = 0 であるときは, ポテンシャルは (不連続な)特性関
数であると定義し, このとき J ε

0 は自由境界 Allen–Cahnエネルギーであるという1. Allen–Cahn

エネルギーは, 容器の中に水蒸気を詰めた際の水と水蒸気の平衡状態を探す問題から考案された.
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10 < δ < 2 のときでも |∇u| = 0 on ∂{|u| < 1} という自由境界が現れるが, 今回は連続でないポテンシャルを考え

る必要のある δ = 0 に話題を絞る.



このエネルギーを, 例えば体積保存条件 ´Tn u dx = m などの適切な条件の下で最小化する問題を
ε << 1 に対して考えると, 最小化関数 u はポテンシャル項の影響により概ね u ≈ ±1 となり, こ
れは化学物質を {u ≈ 1} と {u ≈ −1} の二相に分離する影響を表している. 加えてDirichletエネ
ルギーが u の振動を抑える効果を持つことにより, 二つの領域はある程度整った形になることが
想像できる. そのため化学的な背景を鑑みると, 確かにAllen–Cahnエネルギーは二物質の相分離
を説明していると解釈できる. 本稿ではこのエネルギーの化学的な導出や歴史には触れないが, 興
味のある読者は例えば利根川吉廣教授による論説 [利根川 05] を参照されたい.

次に “自由境界”と呼ばれる由来を, エネルギーのEuler–Lagrange方程式を求めることで説明す
る. まず δ = 2 のときの汎関数の第一変分を計算してみる. 任意のテスト関数 ϕ ∈ C∞

c (Tn;R) に
対して,

J ε
2 (u+ tϕ)− J ε

2 (u)

t
=

ˆ
Tn

2ε∇u · ∇ϕ+
1

ε

W2(u+ tϕ)−W2(u)

t
dx

が得られる. Euler–Lagrange方程式とは汎関数の停留点となる関数が満たすべき方程式であった.

上記の式で t → 0 として = 0 を考えると,

−
ˆ
Tn

2ε∇u · ∇ϕdx =

ˆ
Tn

W ′
2(u)

ε
ϕ dx

が得られる. 左辺を部分積分し, 変分法の基本補題を用いることで,

ε∆u =
W ′

2(u)

2ε
=

2u(1− u2)

ε
(1.1)

という方程式を得ることができる. これが (通常の)Allen–Cahn方程式である. 上の計算は関数を摂
動する外在的な変分であるが, δ = 0のときはポテンシャルが不連続関数であることからこの変分と
相性が悪い. そのため変数を任意のテストベクトル場 B ∈ C∞

c (Tn;Rn)で摂動する x 7→ x+ tB(x)

という,いわゆる内在的な変分を考える必要がある. 簡略化のための記号として Ψt(x) = x+tB(x),

Φt(x) = Ψ−1
t (x), ut = u ◦ Φt とおく. 変数変換 y = Φt(x) を行うことで, Diricheltエネルギーに

ついてはˆ
Tn

ε|∇ut|2 dx =

ˆ
Tn

ε∇u(y) ·
(
(DΨt(y))

−T (DΨt(y))
−1
)
∇u(y)|det(DΨt(y))| dy

と計算できる. ベクトル場に対する D はヘシアン行列を表すとする. ベクトル場 Ψt において,

DΨt = In + tDB, (DΨt)
−1 = In − tDB + o(t), det(DΨt(y)) = 1 + tdivB + o(t)

となることに注意すると, 上記の式はˆ
Tn

ε|∇ut|2 dx =

ˆ
Tn

ε|∇u|2 dx+ t

ˆ
Tn

ε
(
|∇u|2divB − 2∇u ·DB∇u

)
dx+ o(t)

となる. ポテンシャル項は, 領域 {|u| < 1} の面積を変分すればよいことから, 上記の det(DΨt(y))

の式とあわせることで,

ˆ
Tn

χ(−1,1)(ut)

ε
dx =

ˆ
Tn

χ(−1,1)(u)

ε
+

t

ε
divB dx+ o(t)

であることがわかる. よって J ε
0 の (内在的)変分が 0 であるとすると,

0 =

ˆ
Tn

ε
(
|∇u|2divB − 2∇u ·DB∇u

)
+

t

ε
divB dx



が得られる. ここで議論のために ∂{|u| < 1} が C2 であるとする. ポテンシャルエネルギーの変
分からくる項 ´ divB dx は, 発散定理を用いることにより suppB ⊂ {|u| < 1} であるときに消
える. そのため停留点 u は, 気合を入れて部分積分することで, ∆u = 0 in {|u| < 1} を満たす必
要があることがわかる. また, 上記の式に対してもう一度気合を入れて部分積分を連打すること
により, 実は境界 ∂{|u| < 1} 上で |∇u| = 1/ε が成り立たなければならないことがわかる. どの
ように気合を入れればよいかについては, 例えば [Vel23, Section 9.2] を参照のこと. このように
Euler–Lagrange方程式を汎関数から導出する際に, 領域 {|u| < 1} の境界上で u が満たすべき条
件が自然に決まり, かつ u を決定することが領域 {|u| < 1} を決定することにつながるため, δ = 0

は自由境界 Allen–Cahnエネルギーと呼ばれる. そして, u が自由境界 Allen–Cahn方程式の解で
あるということが次のように定義される.

Definition. 関数 uε : Tn → [−1, 1] をリプシッツ, すなわちほとんど至る所で |∇u| ≤ C なる定
数 C < ∞ があるとする. この uε が自由境界Allen–Cahn方程式の古典解であるとは,∆u = 0 in {|u| < 1},

|∇u| = 1/ε on ∂{|u| < 1}
(1.2)

を満たしかつ ∂{|u| < 1} が局所的に C2 グラフで表示できるときのことをいう.

2 先行研究: Allen–Cahnエネルギー J ε
δ の歴史

2.1 Classical Allen–Cahnエネルギーと極小曲面論について
Allen–Cahnエネルギーは化学的な背景から導入されていると前章で言及したが, 純粋数学の世

界では幾何学的なつながり, 特に極小曲面の理論と強い結びつきがあることが知られている. 極小
曲面とは, 平均曲率が至る所 0 であるような曲面のことである. 変分法の言葉で説明すると, 曲面
積を曲面に対する汎関数であると考えたとき, この汎関数の停留点が極小曲面になることが知られ
ている. Allen–Cahn方程式は曲面ではなく関数に対する汎関数であるためぱっと見では関連は見
られないが, ε → +0 としたときのふるまいを観察することで, 極小曲面との関連を見出すことが
できる. 以下では δ = 2 としてそのつながりを見ていく. 各 ε ∈ (0, 1) に対し, J ε

2 を (局所的に)

最小化する関数を uε とする. 補助的に

φ(s) =

ˆ s

−1

√
2W2(s) ds, wε(x) = φ ◦ uε(x)

という関数を導入する. 最小化されている事実から, supε J ε
2 (uε) ≤ C であるとすることができる

ため, uε と wε について
ˆ
Tn

|∇wε| dx =

ˆ
Tn

√
2W2(uε)|∇uε| dx ≤ J ε

2 (uε) ≤ C,

ˆ
Tn

W2(uε) dx =

ˆ
Tn

(1− u2ε)
2 dx ≤ εJ ε

2 (uε) ≤ εC,

という式を得ることができる. 上記の一式目と関数解析におけるコンパクト性の議論から, 必要な
ら部分列をとることにより, wε → w0 (a.e.) なる関数 w0 をとることができる. また逆関数を取る
ことで u0 = φ−1 ◦w0 という関数が得られ, この関数についても uε → u0 (a.e.) が成り立つことが
わかる. 上記の二式目から, u0 ≡ ±1 (a.e.) でなければならない. そのためある集合 E を用いて,



極限の収束先を u0 = 2χE − 1 と書くことができる. 加えて, 任意のベクトル場 B ∈ C∞
c (Tn;Rn)

に対して, 発散定理と収束を考えることで
ˆ
Tn

B · ∇uε dx = −
ˆ
Tn

uεdivB dx → −
ˆ
Tn

u0divB dx

がわかる. 上記右辺は再度発散定理を用いると, ∇uε という関数は ∂E に積分を通して収束してい
ることがうかがえる. すなわちAllen–Cahnエネルギーを最小化する関数は, ある集合 E を ε を用
いて “拡散”したものになっていることが観察され, Allen–Cahnエネルギーは “拡散”した曲面積
に対応する. 加えて, uε が最小化されているという事実から, Modica–Mortola [MM77] やModica

[Mod87] により, ∂E は表面積汎関数の (局所)最小化曲面, すなわち極小曲面であることが知られ
ている.

では, uε が単に停留点であり, エネルギーが ε によらず有界であるとだけ仮定するとどうなる
だろうか. 上記の議論自体は最小化であるという性質をエネルギーの有界性にしか使っていない
うえに, すでに偏微分方程式が得られていることから比較的簡単に収束先を調べることができそう
である. Modicaらの議論を最小性を使わずに行えば同様の極小曲面への収束が示せそうであるが,

実はいくつか困難点がある. 一つは, Allen–Cahnエネルギーと極小曲面の関係は表面積汎関数に
よってつながっているため, すべて積分の意味で解釈しなおす必要がある点である. Allen–Cahnエ
ネルギーは拡散した曲面積であるため, ε → +0 とすれば曲面積に集中しそうである. しかし関数
の収束先がとれたとしても, エネルギーの収束に対しては下半連続性しか保証できないことから,

(Allen–Cahnエネルギー) → (曲面積汎関数)

のような直接的収束は期待できない. また, 解のレベルセット {uε = t} の曲率を計算したとしても
ε → +0 のふるまいがうまくいく式にならず, t について積分平均を考える必要性が表れる. 二つ
目は, Allen–Cahnエネルギーは極小曲面を “拡散”して近似しているため, 近似による誤差が出て
くるだろうということである. 実際, {uε = t} の曲率の積分平均を計算すると ε|∇uε|2−W2(uε)/ε

という誤差項が現れるため, この項について評価が必要になる. 解 uε が何かしらの意味で最小化
されている場合であれば, 上記の問題点をエネルギーの変分に直接テスト関数をうまく入れること
で解決できる. しかし停留点であるというだけでは, 不思議な言い回しだが uε は偏微分方程式の
解であること “だけ”しか使えないことが問題になる. これらの点について, 曲面を積分の意味で
一般化する varifoldの枠組みを用いて, 単調性公式や比較原理を駆使して収束先が超関数の意味で
極小曲面になることがHutchinson–Tonegawa ([HT00]) により証明された.

2.2 自由境界Allen–Cahn方程式について
ポテンシャル項に対する定数が δ = 2 であるときとの類似で, δ = 0 であるときも前章のような

極小曲面との関連があるのではないかと考えられる. エネルギー J ε
δ を δ ∈ [0, 2) の場合に初めて

導入したのがCaffarelliとCórdobaであり, 彼らは論文 [CC95] で, δ ∈ [0, 2] の場合に, J ε
δ を最小

化する関数 uε のレベルセット {uε = t} が一様に極小曲面へ収束することを示した. また彼らは続
く論文 [CC06] で, 最小化関数のレベルセットはLipschitzであり, さらに J ε

δ の停留点がLipschitz

グラフで表示できるならそのグラフは C1,α 正則性を持つことを証明した. これらの結果は (δ = 2

の状況も含めて), J ε
δ と極小曲面の理論の深いつながりを表している. 他にも自由境界に関する研

究は膨大な結果が知られており, 例えば [DGW22, Kam13, LWW18, Val04, Val06, Wan15] など
があげられる.



一方で, δ = 2 の場合で出てくる方程式 (1.1) ではなく, わざわざ自由境界を含んだ問題を考え
る意味はあるのか? という自然な問いが考えられるだろう. この問いに対する答えは, 「自由境界
問題は非線形項が自由境界に “集中”しているため, 実際に考察する関数自体は非常に性質の良い
調和関数となり, classical Allen–Cahn方程式より扱いやすいものである」 となる. 他にも, 自由
境界Allen–Cahn方程式の解 u は概ね傾き 1/ε を持ち, 領域 {|u| < 1} を隔てて二つの相 {u = 1}
と {u = −1} がきちっと分離されているため研究しやすいと言える. 通常のAllen–Cahn方程式の
解では二相は “ぼんやりと” 分離されているため, この分離をコントロールしているポテンシャル
からくる非線形項を相手にしなければならない.

近年, このシンプルな構造からくる解析のしやすさを利用した自由境界Allen–Cahn方程式の研
究が始まってきており, ある部分では classical Allen–Cahn方程式よりも強い結果が得られている.

例えば, Anは [An25] において, Lipschitzグラフで表示できる自由境界 Allen–Cahn方程式の解
は, C2,α 正則性を持つことを非常に簡潔な議論で証明している. キーアイデアは, 解のレベルセッ
トの幾何学的な量をレベルセット方向に沿って微分し自由境界条件を用いて性質の良いODEを導
出するというもので, 解の持つ幾何学的な性質をよく反映した論法である. 類似の結果は classical

な場合にも知られており, WangとWei ([WW19a, WW19b]) により, 解が安定2かつ n ≤ 10, あ
るいはモース指数3が有限かつ n ≤ 2 のときにレベルセットの C2,α 正則性を示している. これ
らの結果は非線形項からくる困難点を, 複雑な比較関数の設定とTodaシステムからくる難解な証
明によって対処しており, かつ次元や解の性質に仮定をつけたものになっている. 他にも自由境界
Allen–Cahn方程式の簡潔さを示す結果として, 従来知られていなかった高次元でのDe Giorgi予
想4の (自由境界型の設定に対しての)解決 [CFRFS25] が知られている.

3 主定理
主定理を述べる前に, 本稿の研究の動機について説明する. Allen–Cahnエネルギーが極小曲面

論と強いつながりを持つという文脈の中で, ChodoshとMantoulidisは [CM20] において, 以下の
Yauの予想と呼ばれる問題をAllen–Cahn方程式を用いて解決した:

「任意の三次元閉リーマン多様体には,無限個の滑らかなかつ閉なはめ込まれた極小曲面が存在
する.」
証明の主な方針は [WW19a, WW19b] の論法を, 三次元閉リーマン多様体上に拡張するという

ものである. 一方で, Allen–Cahnエネルギーを用いる方法と別の考え方から, Songが [Son23] で
多様体の次元を 3 ≤ n ≤ 7 に拡張した結果を得ている. このことからAllen–Cahnエネルギーを用
いた証明も高次元に拡張できるだろうと考えられる. ここでAnによる正則性の結果 [An25] に次
元の制約がないことを思い出すと, 自由境界Allen–Cahnエネルギーは通常のAllen–Cahnエネル
ギーより Yauの予想に適しているのではと期待できる. しかし自由境界 Allen–Cahn方程式を用
いたアプローチのために, まず自由境界Allen–Cahn方程式からそもそも極小曲面が構成できるの
か? という根本的な問題を考える必要があり, 本稿の目的はこの問題に解答を与えることである.

本稿の主定理は, Hutchinson–Tonegawa型の収束定理, すなわちAllen–Cahn方程式の解は ε →
+0 という極限を考えることで極小曲面が現れるという定理が, 自由境界Allen–Cahn方程式 (1.2)

の解に対しても証明されたというものである. 具体的には以下の定理が主定理となる.

2安定とは, 汎関数の第二変分が非負であること.
3モース指数が m であるとは, 汎関数の第二変分が負となるような関数が, 考えている関数空間内で m 次元である

こと.
4全空間 Rn 内において, n 方向の偏微分が常に正な Allen–Cahn方程式の解は 2 ≤ n ≤ 8 なら一次元的であるとい

う予想.



Main Theorem ([AT25a]). 各パラメータ ε ∈ (−1, 1) について, uε を 自由境界Allen–Cahn方
程式 (1.2) の解とする. さらに, 任意の ε > 0 に対し,

ˆ
Tn

ε|∇uε|2 +
χ(−1,1)(uε)

ε
dx ≤ C < ∞

が成り立つとする. このとき, dµε =
(
ε|∇uε|2 +

χ(−1,1)(uε)

ε

)
dx とおくと, 必要ならさらに部分列

を取ることで uε → u0 ∈ BV (Tn; {±1}) (a.e.), µε ⇀ µ なる関数 u と Radon測度 µ を取ること
ができる. さらに, µ について以下が成り立つ:

1. µ は可算修正可能 (n− 1)-Radon測度. すなわち, ある可算個の (n− 1) 次元 C1 多様体の
族 Mi が存在して Hn−1(M \

∪
iMi) = 0 となるような Hn−1-可測な集合 M が存在し, か

つ M 上の ,Hn−1-可積分関数 θ : M → [0,∞) が存在して µ = θHn−1bM と表せる. ここ
で Hn−1 は Tn 上の (n− 1) 次元Hausdorff測度.

2. µ = θHn−1bM は超関数の意味で極小曲面である. すなわち,

ˆ
Tn

tr (PTx M ◦ ∇B) dµ = 0 for all B ∈ C1
c (B1;Rn)

が成り立つ. ここで, tr は行列のトレース作用素, PTx M は接平面 TxM への射影行列. 注
意として, M は Hn−1 測度の意味でほとんど至る所 C1 多様体であるとみなせるので, その
意味で接平面 TxM がほとんど至る所で定義できる. この等式は µ に対する (内在的変分と
同じように計算した)第一変分となっており, µ が滑らかな多様体 M を用いて µ = HnbM
と表示できたと仮定すると, 部分積分から上の式は平均曲率が積分記号化で 0 であることを
表している.

3. 各 K ⊂⊂ Tn に対し, ∂{|uε| < 1} ∩K は sptµ ∩K にHausdorff距離の意味で収束する.

4. ε によらない定数 C̃ > 0 があって ‖∇2uε‖L∞({|uε|<1}) ≤ C̃/ε2 であると仮定すると, 2の θ

は Hn−1-a.e. で非負の整数値となる.

Remark. 上記は [CC95, CC06, CFRFS25] の結果と異なり, 解 uε に対し, 最小化関数であるこ
とや安定であることを仮定していない. 一方で, [HT00] では uε が J ε

2 の停留点, すなわち (1.1)

の解であるとしか仮定しておらず, 本講演の主定理の仮定よりさらに弱い状況で収束性を議論して
いる. 関数 uε が J ε

0 の停留点であるとき, [De09] により uε は (1.2) の粘性解であることが知られ
ているが, ∂{|uε| < 1} が C2 であるかはこの段階では非自明である. 粘性解であるという仮定の
みで, 本稿での主結果と同じ結論が得られるかは興味深い問題である. また, θ が整数値となる主
張に追加の仮定がついているが, これも元々の [HT00] にはなかったものである. この仮定がいつ
成り立つのか, あるいは成り立たない例が存在するのかについても興味深い問題であると言える.

4 証明の概略
Main Theorem 3, 4 の内容は非常に技巧的であるので, 本稿では説明しない. 証明の概略の前に,

極小曲面への弱い意味での収束を考えるための, 一般化された曲面のクラスである varifoldについ
て軽く紹介する.



Definition. 集合 G(n, n− 1)5 を Rn 内の (n− 1) 次元部分空間全体とし, 開集合 Ω ⊂ Rn に対
して Gn−1(Ω) = Ω×G(n, n− 1) とおく. この集合 Gn−1(Ω) 上のRadon測度を varifoldという.

また,

‖v‖(A) = v(A×G(n, n− 1)) for A: Borel set

と定める.

Varifold V が単に積測度 dµbx∈Ω×dβbS∈G(n,n−1) であると思ったとき, Ω での積分 µ が曲面積
測度を表し, G(n, n− 1) での測度 β が曲面の接平面が何であるかを超関数の意味で表していると
解釈できる. とはいえ, この定義はあまりにも抽象的で, 曲面の一般化ができているようには思えな
い. 実用的にはMain Theoremの 1で紹介した可算修正可能Radon測度というものがよく使われ
る. 実際,可算修正可能Radon測度 µ = θHn−1bM は,任意のテスト関数 ϕ ∈ Cc(Gn−1(Ω); [0,∞))

に対して
vµ(ϕ) :=

ˆ
Gn−1(Ω)

ϕ(x, TxM) dµ(x),

すなわち対応する varifoldを µ× δTxM と考えることで, Rieszの表現定理から µ を varifoldであ
ると合理的にみなすことができる. 一方で varifoldは単にRadon測度であるとだけしているので,

部分列を抜き出して収束先をとるコンパクト性定理を簡単に証明できるメリットがある. つまり
ε → +0としたときのふるまいを, 上記の varifoldを使って収束先を保証し, その後収束先のRadon

測度が何者であるかを調べるとよさそうである. では Allen–Cahn方程式の解 uε から, 次のよう
に varifoldを定義しよう: 任意の ϕ ∈ Cc(Gn−1(Tn); [0,∞)) に対し,

vε(ϕ) :=

ˆ
{|∇uε|̸=0}

ϕ

(
x, I − ∇uε

|∇uε|
⊗ ∇uε

|∇uε|

)(
ε|∇uε|2 +

χ(−1,1)(uε)

ε

)
dx.

この測度に対してコンパクト性定理を使い, 収束先となる varifold v をとったとする. この測度が
Main Theorem 1のようになっているかを判定するのに, 次のAllardの判定法 ([All72, 5.5 (1)]) が
有効である.

Proposition. Varifold v の第一変分を (内在的変分と同じように計算することで)

δv(B) =

ˆ
Gn−1(Ω)

tr(S ◦ ∇B(x)) dv(x, S) for B ∈ C1
c (Ω;Rn)

とする. 第一変分が局所有界である, すなわちある定数 C < ∞ があって |δv(B)| ≤ C sup|B| で
あるとし, 密度関数について

0 < lim inf
r→+0

‖v‖(Br(x))

rn−1
≤ lim sup

r→+0

‖v‖(Br(x))

rn−1
< ∞

が ‖v‖-ほとんど至る所で成り立っているとすると, この v は修正可能 Radon測度で表示できる.

以上により収束先としてとった varifold v に対して必要な評価は, 収束先が極小曲面であること
を期待していることから, δv が 0 となることと, 修正可能であることを保証するための密度関数
の評価の二つであることがわかる. 近似 varifold vε に対して第一変分を計算すると, uε が (1.2)

の解であることも考慮すると, 任意の B ∈ C1
c (Tn;Rn) に対し

δvε(B) = −
ˆ
{|∇uε|̸=0}

tr

((
∇uε
|∇uε|

⊗ ∇uε
|∇uε|

)
◦ ∇B

)(
ε|∇uε|2 −

χ(−1,1)(uε)

ε

)
dx

5この集合の平面を射影行列と同一視し, 行列がなす空間としてのノルムを考えることで, G(n, n− 1) はコンパクト
な位相空間となる.



となる. つまりこの厄介者 ε|∇uε|2 − χ(−1,1)(uε)/ε が ε → +0 としたときに 0 となるかが鍵にな
る. 密度関数の評価に対しても第一変分の誤差に対しても, (1.2) に ∇uε · B をかけて部分積分を
することで得られる次の単調性公式が鍵となる:

Proposition. 任意の Br(x) ⊂ Tn に対して,

d

dr

(
1

rn−1

ˆ
Br(x)∩{|uε|<1}

(
ε|∇uε|2 +

χ(−1,1)(uε)

ε

))

=
1

rn

ˆ
Br(x)∩{|uε|<1}

(
χ(−1,1)(uε)

ε
− ε|∇uε|2

)
+

2ε

rn+1

ˆ
∂Br(x)∩{|uε|<1}

(
(y − x) · ∇uε

)2
が超関数の意味で成り立つ.

この単調性公式と, 比較原理から得られるModicaの不等式 |∇uε| ≤ 1/ε を組み合わせることで,

ε|∇uε|2 − χ(−1,1)(uε)/ε が 0 に収束しないと仮定すると, この誤差項が単調性公式では 1/rn がか
かったものとして現れることから, 密度関数が際限なく大きくならなければならない. しかしそれ
はエネルギーの上からの有界性 J ε

0 (uε) ≤ C に矛盾するため, 誤差項が消えなければならない.

実はここまでの議論は, Hutchinson–Tonegawa [HT00] による議論と同じである. 一方で同じと
いかない部分があり, それは密度関数の下からの評価である. どのような違いが表れるかを説明
する. まず ‖v‖ の測度が表れる点 x をとる, すなわち任意の r > 0 に対して ‖v‖(Br(x)) > 0

となるような点をとる. 測度 v は vε の収束先であることから, 測度がでる点 x というのは
ε|∇uε|2 + χ(−1,1)(uε)/ε の値がでる点であると考えられる. そのため xε ∈ {|uε| < 1} をうまくと
ることで xε → x であるとすることができる. この事実を用いて密度を ε の世界に戻して計算す
ると, 単調性公式とリスケーリングにより,

‖v‖(Br(x))

rn−1
≥ lim

ε→+0

1

rn−1

ˆ
Br/2(xε)∩{|uε|<1}

(
ε|∇uε|2 +

χ(−1,1)(uε)

ε

)
dx

≥ lim
ε→+0

1

(2ε)n−1

ˆ
Bε(xε)∩{|uε|<1}

(
ε|∇uε|2 +

χ(−1,1)(uε)

ε

)
dx

≥ 1

2n−1
lim

ε→+0

ˆ
B1(0)∩{|uε(ε(·)+xε)|<1}

χ(−1,1)(uε(ε(·) + xε)) dx

=
1

2n−1
lim

ε→+0
Ln(B1(0) ∩ {|uε(ε(·) + xε)| < 1})

と計算できる. Classicalな状況では, ポテンシャル項の影響により uε ≈ ±1 ならエネルギーが非
常に小さくなることから, xε ∈ {|uε| < 1/2} のように制限した領域からとることができる. よって
楕円型方程式の標準的な評価をリスケーリングした関数に適用することで, ある程度小さいボール
上では上記の不等式でのポテンシャル項は下から抑えられる. この戦略は, 自由境界型は “自由境
界がある”ゆえに適用することができない. 具体的には, 自由境界の存在により標準的な楕円型の
評価が成り立たず, uε はせいぜいリプシッツ連続であることしか保証できない問題がある. またポ
テンシャル項の形もただの特性関数であり, uε ≈ 0 であろうが uε ≈ ±1 であろうがエネルギーの
値に変わりがないということも問題になる. この問題に対して自由境界型で証明できる, 以下の命
題を使うことで密度が 0 になると矛盾するという戦略を取った. これが本稿で紹介した定理の証
明の一番のアイデアである.

Proposition. ある定数 c = c(n) > 0 が存在し, 次が成り立つ: 任意の∆u = 0 in B2r(0) ∩ {u > 0},
|∇u| = 1 on B2r(0) ∩ ∂{u > 0},



の解である u が |∇u| ≤ 1 を満たし, かつ Ln(B2r(0) ∩ {u > 0}) ≤ crn を満たすなら {u >

0} ∩Br(0) = ∅ である.

密度の計算で出てきた limε→+0 Ln(B1(0) ∩ {|uε(ε(·) + xε)| < 1}) が 0 であると仮定してみる.

このとき次の L1-Lip 補間不等式

‖u‖L∞(B1(0)) ≤ Cmax
{
‖u‖1/(n+1)

L1(B1(0))
‖∇u‖n/(n+1)

L∞(B1(0))
, ‖u‖L1(B1(0))

}
を用いることで, 例えば (uε(ε(·) + xε) + 1)/2 に対して B1(0) 内で Propositionが使える状況に持
ち込むことができる. この Propositionによると x = 0 ではリスケーリングした後の関数の値が 0

となる, つまり uε(xε) = ±1 になることがわかるがこれは矛盾である. 以上が証明の概略となる.

5 今後の展望
Section 2 で説明したように, この定理の直接的な応用先として, Yauの予想があげられる. その

ためにはまず自由境界Allen–Cahn方程式の解のうち, モース指数が有限なものを研究する必要が
ある. 従来の研究は最小化関数あるいは安定な関数に対するものが主であり, 特に自由境界の正則
性については未知な部分が多い. 解がどうあるべきか, そして通常のAllen–Cahn方程式の解とど
のような点では類似した性質を持ち, どのような違いが見出せるかは重要な課題といえよう.

またごく最近, 本稿の著者と Jingeon An氏の共著で放物型の自由境界Allen–Cahn方程式につい
ての研究を行った ([AT25b]). 放物型問題は楕円型と比べると非常に研究が少なく, 完全なブルー
オーシャンと言ってよい状況である. 日本ではこのような問題に取り組む研究者は少ないため, 本
稿で興味を持っていただければ幸いである.
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